Programming Assignment Requirements

Note the following requirements for ALL programming assignments throughout the entire semester:

General

complicated program that does not work for any cases. Programs that fail to compile will receive a 0.

Your programs must demonstrate good design with efficient implementations. You are responsible for all of the implementation,
including when a generated/default/inherited implementation is provided (e.g., toString in Java).

You must precisely follow the complete specification for any assignment; however, any given specification (interface, classes,
tests, etc.) defines the minimum. It does NOT, in any way, prevent you from having additional classes and methods. In fact, a
good design will likely have additional elements. This does not prevent you from having less restrictive access permissions. Any
interface specification is just for the prototype information (e.g., class/method name, parameter/return types, static or non-static).
Determination of which classes/methods should be abstract and/or overridden is yours according to good design.

Distrust any external (i.e., from network, users, files, telepathy, etc.) input.

Your programs should not print anything to the console unless specifically instructed to do so. In particular, unit test and library
classes should print nothing to the console. Of course, when appropriate, you should output to a log.

Your program should gracefully handle problems such as system call failures, bad input, etc. Graceful means that it gives a
useful message and follow the protocol. If terminating, your program should return a code that is useful for debugging specific
failure explanation. Your program must NEVER terminate outside of your control (e.g., termination due to exceptions, faults,
etc.). This includes parameter usage. Even if the book examples terminate ungracefully (e.g., by throwing

[llegal ArgumentException), your program may NOT do this.

Friendly heads-up: The programming assignments may build on one another. This means that each program may depend on one
or more of its predecessors.

Make sure you follow all Coding Conventions/Guidelines and preparation instructions from the class web page, assignment
instructions, and deliverable specifications.

Test your program thoroughly. Testing should be automated. For unit tests, use a code coverage tool to make sure you test every
testable line.

Always run your tests on your final submission. Do not fully test, then make one last change that you “know” won’t break
anything, and then submit.

Upload

You will submit your code as a zip file to the submission site. Your archive should contain ONLY source code files (e.g., no
compiled files). Your code should be contained in directories corresponding to their packages; no other directories should be used
in your archive. Your program must contain all files necessary for self-contained, command-line compilation and execution
except standard (e.g., libc) and provided libraries.

Any path in your code must be relative to your submission directory structure (e.g., NOT C:\Users\Phil\log.log). You can place
such files at the top-level (i.e., at the same level as the top-level package directories) as this will be the default working directory
for the JVM. You should test with the command-line (e.g., javac and java) to make sure it works. Log files must always be
created in the JVM working directory. Servers should always start with an empty log file (no append).

Keep a copy of your final submission. This will be helpful when you are running my tests against your final submission.

You should begin your final submission at least 15 minutes before the due date/time to ensure you can retry if problems occur.
Starting from two days after you receive an assignment, you are required to submit the latest version of your submission on every
even day leading up to the due date as well as the final due date. Each version should show steady, meaningful progress. For
example, if the assignment is given on the 12", you must start your every even day submission on the 14, If the assignment is
given on the 15", you must start your every even day submission on the 18™. Every even day does include weekends. You do not
have to submit on even university holidays.

For each assignment, you MUST turn in solutions for all previous assignments. For example, when you turn in Program 2, it
must contain everything from Program 0 and Program 1. Each submission should be fully contained (i.e., the grader will not
frankenstein previous and current submission together to get a working version). Code from previous assignment must be
corrected; note well that code from previous assignments may be graded.

For hard copies (only if required), you only need to print source files that are new for this current assignment. Make sure your
hard copy includes all code (e.g., including code collapsed by IDE). Code should be printed landscape with two columns; format
your code such that such printing does not add line breaks. Your printed code should be easily readable. Source hardcopies should
be submitted in alphabetical order (case insensitive) by public class name. The package name is part of the class name (sample
print ordering: pkgl.class2, pkg2.classl, pkg2.class3).

© Michael J. Donahoo 16 Jan. 2026



Java

Your program must be written using appropriate facilities in the latest (as of the first day of class) release (General Availability)
of Java. You may only use standard, non-preview language features.
For JUnit testing, you must use the latest (as of the first day of class) production release of JUnit.

C/C++

For C and C++, your program must compile with the latest (as of the first day of class) gcc/g++. You may certainly add options to
change the C/C++ standard used for compilation.

At a minimum, compile gcc/g++ with: -Wall -Wextra -Wpedantic -Wconversion

You must test your programs with appropriate tools for memory leaks/faults, open descriptors, etc. At a minimum, you should
use valgrind. Recommended options --tool=memcheck --show-reachable=yes --leak-check=full --track-fds=yes.

Specifications/Protocols

Specifications/Protocols are written, not spoken. Make sure anything you rely on for your implementation is written in the
specification or in any addendums.
The provided specification (including any updates on Canvas) is the sole authority. Information from other sources, including the
upload site, are not authoritative.
Your protocol implementations should be robust; they should gracefully handle failures, whether accidental or malicious.
Implementations must 1) assume failures are common and 2) behave defensively (i.e., input is not to be trusted). The applicable
adage is that you should "be conservative in what you believe." The Heartbleed vulnerability failed in this respect because it
believed that the message length in the message header was the actual message length; hackers took advantage of this misplaced
trust. Implementations should also expose errors. Violations of the protocol specification should generate errors. For example, if
you expect "123" and get "123ABC", it should be failure that generates an error. Note well that this may contradict a long-held
Internet principle to be "conservative in what you send and liberal in what you accept." In this case, you might ignore the ABC at
the end because you got the 123). For this class, we'll go with strict protocol adherence. Some examples of how this applies
include (but are not limited to):
o Reject messages with extraneous bytes
o Reject messages with explicitly incorrect values. For example, if the protocol specifies that a bit must be 0, then reject if it is
1. If the protocol does not specify the semantics or values, you should not reject (i.e., just ignore). For example, if a bit is
"RESERVED" but no value is specified, then you should completely ignore the value.
Why this approach? The idea is that this may provide better security. In addition, for new protocols, a strict interpretation will
help avoid implementation oddities creeping into the protocol for the sake of compatibility (e.g., We've changed the protocol to
allow X because the major implementations already do X and we don't want to break things). Note that there is not general
agreement on this. Some would say be "liberal in what you accept" and that such strictness 2) limits flexibility in protocol
evolution and 2) in the case of inevitable protocol ambiguity may result in two complaint endpoints not being able to
communicate.

© Michael J. Donahoo 16 Jan. 2026



